

16 A Three-quadrant triacs high commutation Rev. 01 — 11 April 2007

Product data sheet

Product profile

1.1 General description

Passivated, new generation, high commutation triacs in a SOT78 plastic package

1.2 Features

- Very high commutation performance maximized at each gate sensitivity
- High immunity to dV/dt

1.3 Applications

- High power motor control e.g. washing
 Refrigeration and air conditioning machines and vacuum cleaners
- Non-linear rectifier-fed motor loads
- compressors
- Electronic thermostats

1.4 Quick reference data

- $V_{DRM} \le 600 \text{ V (BTA316-600B/C)}$
- $V_{DRM} \le 800 \text{ V (BTA316-800B/C)}$
- $I_{TSM} \le 140 \text{ A (t = 20 ms)}$
- I_{GT} \leq 50 mA (BTA316 series B)
- $I_{GT} \le 35 \text{ mA (BTA316 series C)}$
- $I_{T(RMS)} \le 16 A$

Pinning information

Table 1. **Pinning**

Pin	Description	Simplified outline	Symbol
1	main terminal 1 (T1)		
2	main terminal 2 (T2)	mb	T2—T1
3	gate (G)	7 0 5	sym051
mb	mounting base; main terminal 2 (T2)		
		SOT78 (TO-220AB)	

3. Ordering information

Table 2. Ordering information

Type number	Package						
	Name	Description	Version				
BTA316-600B	SC-46	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead	SOT78				
BTA316-600C		TO-220AB					
BTA316-800B							
BTA316-800C							

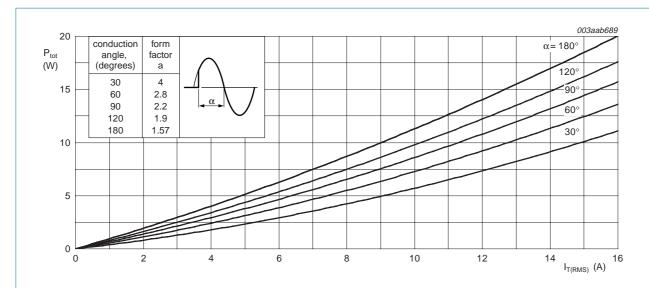
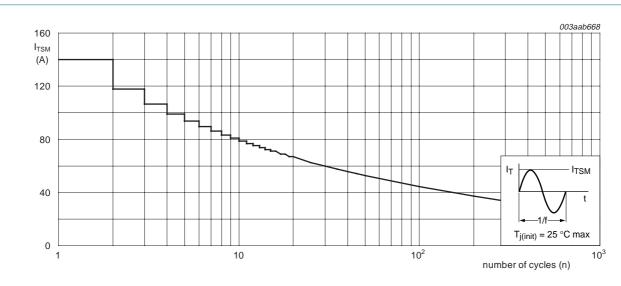

4. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit
V_{DRM}	repetitive peak off-state voltage	BTA316-600B; BTA316-600C	<u>[1]</u> _	600	V
		BTA316-800B; BTA316-800C	-	800	V
$I_{T(RMS)}$	RMS on-state current	full sine wave; $T_{mb} \le 101$ °C; see Figure 4 and 5	-	16	Α
I _{TSM} non-repetitive peak on-state current		full sine wave; $T_j = 25$ °C prior to surge; see Figure 2 and 3			
		t = 20 ms	-	140	Α
		t = 16.7 ms	-	150	Α
I ² t	I ² t for fusing	t = 10 ms	-	98	A ² s
dl _T /dt	rate of rise of on-state current	$I_{TM} = 20 \text{ A}; I_G = 0.2 \text{ A};$ $dI_G/dt = 0.2 \text{ A}/\mu\text{s}$	-	100	A/μs
I_{GM}	peak gate current		-	2	Α
P_{GM}	peak gate power		-	5	W
$P_{G(AV)}$	average gate power	over any 20 ms period	-	0.5	W
T _{stg}	storage temperature		-40	+150	°C
T _i	junction temperature		-	125	°C

^[1] Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 15 A/µs.

 $\alpha = \text{conduction angle}$

Fig 1. Total power dissipation as a function of RMS on-state current; maximum values

f = 50 Hz

Fig 2. Non-repetitive peak on-state current as a function of the number of sinusoidal current cycles; maximum values

(1) dl_T/dt limit

16 A Three-quadrant triacs high commutation

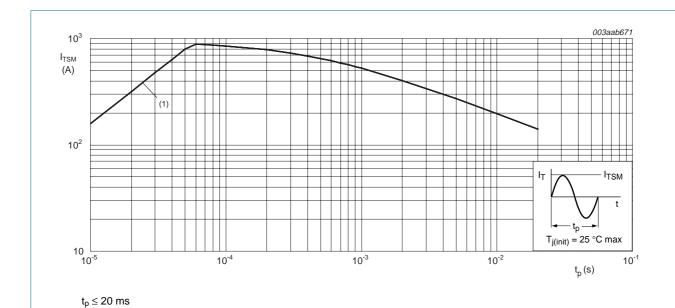


Fig 3. Non-repetitive peak on-state current as a function of pulse duration; maximum values

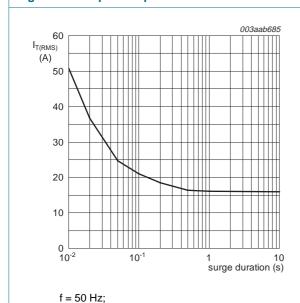


Fig 4. RMS on-state current as a function of surge duration; maximum values

 $T_{mb} = 101$ °C

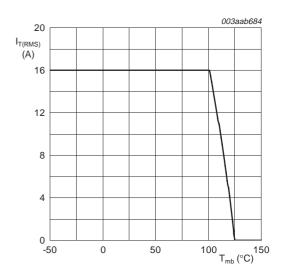
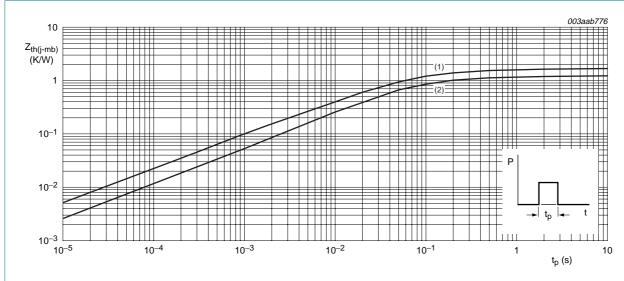



Fig 5. RMS on-state current as a function of mounting base temperature; maximum values

5. Thermal characteristics

Table 4. Thermal characteristics

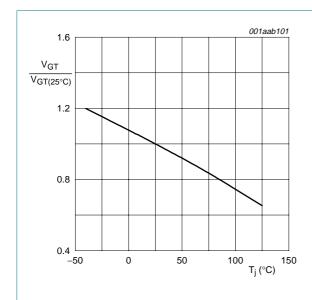
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$		half cycle; see Figure 6	-	-	1.7	K/W
	mounting base	full cycle; see Figure 6	-	-	1.2	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air	-	60	-	K/W

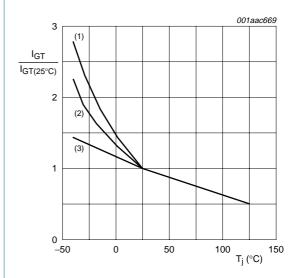
- (1) Unidirectional (half cycle)
- (2) Bidirectional (full cycle)

Fig 6. Transient thermal impedance from junction to mounting base as a function of pulse duration

6. Static characteristics

Table 5. Static characteristics

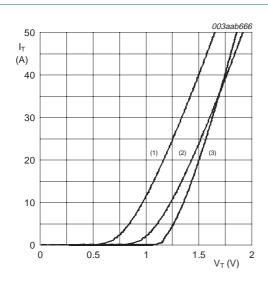

 $T_i = 25 \,^{\circ}C$ unless otherwise specified.


Parameter	Conditions		BTA316-600B BTA316-800B		BTA316-600C BTA316-800C			Unit
		Min	Тур	Max	Min	Тур	Max	
gate trigger	$V_D = 12 \text{ V; } I_T = 0.1 \text{ A; see } \frac{\text{Figure 8}}{}$	'		,	•	'	,	
current	T2+ G+	2	-	50	2	-	35	mΑ
	T2+ G-	2	-	50	2	-	35	mΑ
	T2- G-	2	-	50	2	-	35	mΑ
I _L latching current	V _D = 12 V; I _{GT} = 0.1 A; see <u>Figure 10</u>							
	T2+ G+	-	-	60	-	-	50	mΑ
	T2+ G-	-	-	90	-	-	60	mΑ
	T2- G-	-	-	60	-	-	50	mΑ
holding current	V _D = 12 V; I _{GT} = 0.1 A; see <u>Figure 11</u>	-	-	60	-	-	35	mΑ
on-state voltage	I _T = 18 A; see <u>Figure 9</u>	-	1.3	1.5	-	1.3	1.5	V
V _{GT} gate trigger voltage	$V_D = 12 \text{ V}; I_T = 0.1 \text{ A}; \text{ see } \frac{\text{Figure 7}}{}$	-	8.0	1.5	-	0.8	1.5	V
	$V_D = 400 \text{ V}; I_T = 0.1 \text{ A}; T_j = 125 ^{\circ}\text{C}$	0.25	0.4	-	0.25	0.4	-	V
off-state current	$V_D = V_{DRM(max)}$; $T_j = 125 ^{\circ}C$	-	0.1	0.5	-	0.1	0.5	mΑ
	gate trigger current latching current holding current on-state voltage gate trigger voltage	$ \begin{array}{c} \text{gate trigger} \\ \text{current} \end{array} \begin{array}{c} V_D = 12 \text{ V; } I_T = 0.1 \text{ A; see } \underline{\text{Figure 8}} \\ \hline T2 + G + \\ \hline T2 + G - \\ \hline T2 - G - \\ \\ \text{latching current} \end{array} \begin{array}{c} V_D = 12 \text{ V; } I_{GT} = 0.1 \text{ A; see } \underline{\text{Figure 10}} \\ \hline T2 + G + \\ \hline T2 + G - \\ \hline T2 - G - \\ \\ \text{holding current} \end{array} \begin{array}{c} V_D = 12 \text{ V; } I_{GT} = 0.1 \text{ A; see } \underline{\text{Figure 11}} \\ \\ \text{on-state} \\ \text{voltage} \end{array} \begin{array}{c} V_D = 12 \text{ V; } I_{T} = 0.1 \text{ A; see } \underline{\text{Figure 9}} \\ \\ V_D = 12 \text{ V; } I_{T} = 0.1 \text{ A; see } \underline{\text{Figure 7}} \end{array} $		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c } \hline \text{Min} & \text{Typ} & \text{Max} & \text{Min} & \text{Typ} & \text{Max} \\ \hline \text{Min} & \text{Typ} & \text{Max} & \text{Min} & \text{Typ} & \text{Max} \\ \hline \text{Min} & \text{Typ} & \text{Max} & \text{Min} & \text{Typ} & \text{Max} \\ \hline \text{Min} & \text{Min} & \text{Typ} & \text{Max} \\ \hline \text{Min} & \text{Min} & \text{Typ} & \text{Max} \\ \hline \text{Min} & \text{Min} & \text{Typ} & \text{Max} \\ \hline \text{Min} & \text{Min} & \text{Typ} & \text{Max} \\ \hline \text{Min} & \text{Min} & \text{Typ} & \text{Max} \\ \hline \text{Min} & \text{Typ} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\ \hline \text{Min} & \text{Typ} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} \\ \hline \text{Min} & \text{Typ} & \text{Min} \\ \hline \text{Min} & \text{Min} & \text{Min} & \text{Min} & \text{Min} & $

7. Dynamic characteristics

Table 6. Dynamic characteristics

Symbol Parameter		Conditions	BTA316-600B BTA316-800B			BTA316-600C BTA316-800C			Unit
			Min	Тур	Max	Min	Тур	Max	
dV _D /dt	rate of rise of off-state voltage	$V_{DM} = 0.67 \times V_{DRM(max)}$; $T_j = 125$ °C; exponential waveform; gate open circuit	1000	-	-	500	-	-	V/μs
dl _{com} /dt	rate of change of commutating current	$V_{DM} = 400 \text{ V}; T_j = 125 ^{\circ}\text{C}; I_{T(RMS)} = 16 \text{ A};$ without snubber; gate open circuit	20	-	-	15	-	-	A/ms
t _{gt}	gate-controlled turn-on time	I_{TM} = 20 A; V_D = $V_{DRM(max)}$; I_G = 0.1 A; dI_G/dt = 5 A/ μs	-	2	-	-	2	-	μs



- (1) T2-G-
- (2) T2+ G-
- (3) T2+ G+

Fig 7. Normalized gate trigger voltage as a function of junction temperature

Fig 8. Normalized gate trigger current as a function of junction temperature

16 A Three-quadrant triacs high commutation

 $V_0 = 1.024 \text{ V}$

 $R_s = 0.021 \Omega$

- (1) $T_i = 125$ °C; typical values
- (2) $T_j = 125 \,^{\circ}C$; maximum values
- (3) $T_j = 25$ °C; maximum values

Fig 9. On-state current as a function of on-state voltage

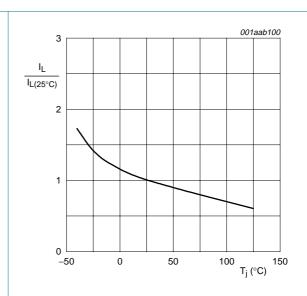


Fig 10. Normalized latching current as a function of junction temperature

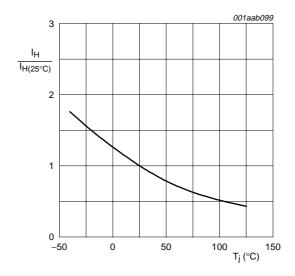
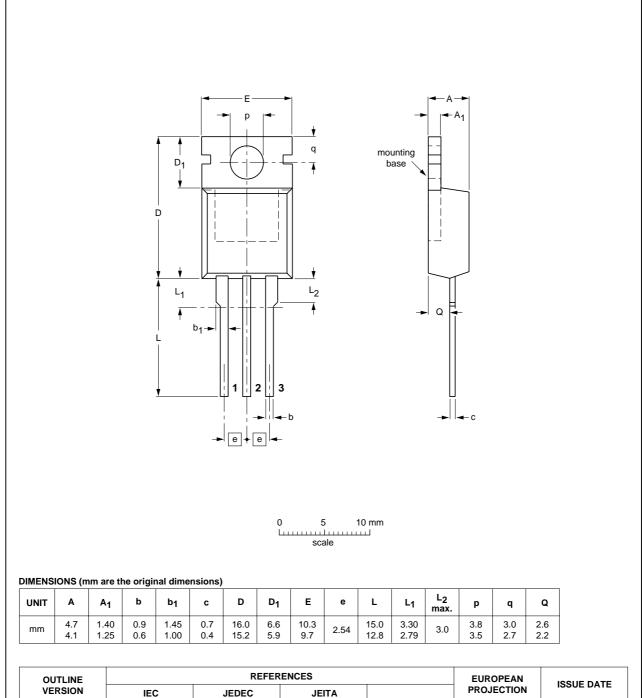



Fig 11. Normalized holding current as a function of junction temperature

8. Package outline

Plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB

SOT78

OUTLINE		REFER	ENCES	EUROPEAN		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT78		3-lead TO-220AB	SC-46		05-03-22 05-10-25	

Fig 12. Package outline SOT78 (3-lead TO-220AB)

16 A Three-quadrant triacs high commutation

Revision history

Table 7. **Revision history**

Document ID	Release date	Data sheet status	Change notice	Supersedes
BTA316_SER_B_C_1	20070411	Product data sheet	-	-

16 A Three-quadrant triacs high commutation

10. Legal information

10.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

10.3 Disclaimers

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

11. Contact information

For additional information, please visit: http://www.nxp.com


For sales office addresses, send an email to: salesaddresses@nxp.com

16 A Three-quadrant triacs high commutation

12. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data 1
2	Pinning information 1
3	Ordering information
4	Limiting values 2
5	Thermal characteristics 5
6	Static characteristics 6
7	Dynamic characteristics
8	Package outline 9
9	Revision history
10	Legal information
10.1	Data sheet status
10.2	Definitions
10.3	Disclaimers
10.4	Trademarks 11
11	Contact information 11
12	Contents 12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11 April 2007 Document identifier: BTA316_SER_B_C_1

